
expansions for the forces, moments, and transverse forces. Let c 0 denote the circumferential 
strain. If a0(w n) # 0, n = 0, i, then the asymptotic expansions of the moment M e and the 

transverse forces Nr, N O start with the power a -2. 

For s0(w n) = 0, n = 0, 1 the plate is inextensible in the circumferential direction. 

In conclusion, we note that the asymptotic for the problem of bending a symmetrically 
assembled anisotropic rectangular laminar shell [5] under strictly nonzero steepness of the 
family of bonding fibers can be constructed completely analogously (in a formal complication 
of the computations). 
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STABILITY OF MAGNETIC SUSPENSION IN A DIRECT-CURRENT MAGNETIC FIELD 

N. N. Kozhukhovskii and V. I. Merkulov UDC 531.36:538.31 

The problem of suspension of a body for a lengthy period of time using permanent magnets 
has attracted the interest of researchers. A detailed bibliography of studies of this problem, 
an analysis of the state of the art, and original results have been presented in [i, 2]. 

The major result achieved has been Ernshaw's theorem, which indicates the instability of 
such suspension. However this theorem is concerned with steady state situations, and as we 
will demonstrate below, is inapplicable to dynamic systems. 

i. We will consider the configuration of magnets shown in Fig. i. We will consider 
motion of an infinitely long rod in the magnetic channel along the axis Ox. The weight of 
the rod P = mg is compensated by magnets of one sign 1 or 2. Along the channel sides there is 
a system of permanent magnets of alternating polarity, which interacts with a similar system 
located on the rod. We will assume that the pole step along the axis Ox is equal to ~ = 2~/k, 
where k is the wave number. We will assume the magnetic material to be saturated with a value 
of ~ = 1 (where p is the relative permittivity), as in a vacuum. Considering further that 
magnet system 3 has a vertical length, we will neglect forces produced by interaction of mag- 
nets 3 and 4 during vertical oscillations of the rod. 

We will now perform some preliminary calculations. At the point Mo(xo, yo, zo) let there 
be some magnetic charge q. Its potential at the point M(x, y, z) is equal to U = q/4~or, 
r 2 = (x -- Xo) 2 + (y -- yo) 2 + (z -- zo) 2, where Do is the absolute magnetic permittivity of free 
space. The force produced by interaction of two charges q+, q- located at these points is 
given by the expression 

t q+q- 
F - - -  - -  

4~,u o r 2 

and is directed along the vector joining the charges. 

We will consider an infinite magnetic pole located along the axis Oz. For an element of 
the pole dz the magnetic charge is equal to dq = y+dz, where T + is the linear charge density~ 
The force of interaction with an analogous elementary charge sectioned from another magnetic 

Kiev, Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i TekhnicheskoJ Fiziki~ 
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We will now define the force with which a charge located in the plane y = 6 is attracted to 
a pole the edge of which lies in the plane y = --~ at coordinate x. Projecting the force d2F 
onto the shortest line joining the point Mo(xo, Yo = ~, zo) to the pole x' = x, y' = --~, z' = 
z, we have 

d21~ : d2 F 
] / ( x -  %)~ + 4~ ~ 

] / - ( ~  _ Xo)2 + 4~ ~ + (~ - ~o) ~ 

~+~- /(~ - x0)2 + ~e 

- 4~o l(~-- ~o) ~ + 4~ ~ + ( ~ .  ~o)~}y '~" 

The force with which an elementary charge is attracted by an infinite pole is given by the 
integral 

~+~-e~ ~ { (~-  ~o)~ +46~} d~. (l.1) 

~R - 4~o ' _~ l ( x -  ~o-~ ~7  46 ~ % (T-- ~--o)~}~ ~' 

Integrating Eq. (i.i) and performing the replacement z -- zo = u/(x -- X o)2--~2~ we obtain [3] 

dR = ?+V-dz0/[2~0]/(x -- x0)2+462]. 

A pole of unit length along the axis Oz will experience an attractive force 

?+?- i (1.2) 

I n  t h e  c a s e  w h e r e  t h e  c h a r g e  i s  d i s t r i b u t e d  a l o n g  t h e  a x i s  Ox, i . e . ,  dq = q - d x  ( w h e r e  q -  = 
d y - / d x  i s  t h e  m a g n e t i c  c h a r g e  d e n s i t y )  we w r i t e  Eq.  ( 1 . 2 )  i n  t h e  f o r m  

a~R = q+q-dx dxo/[2~rgo~(x'-- xo) 2 + 482l. 

The projections of this force on the Ox and Oy axes are equal to 

(x - -  Xo) q+ q-dx  dx o 

~x = 2~o {(~-Xo)~ +4r 
26q+q-dx dx o 

d2y .~_ 
2 ~  o { ( z -  ~of + 46~}" 

(1.3) 

First of all, we integrate Eq. (1.3) over the variable x. By doing this we define the force 
produced upon an elementary magnetic charge by all charges in the plane y = -~: 
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q+ (~o) d~o ~ (x - ,~o) ~ ~/(~ , )  dx 

7- 

q+ (%) d% ,T ~,Sq- (,~) d,- 
eY _ : !  ( '  

(1.4) 

Performing the substitution x -- xo = u in Eq. (1.4) and taking the magnetic charge density in 
the form 

q+(xo) = qo s in  k(xo q- ~), q-(x) = q o  s in  kx, 

we find, by symmetry, that 

Since according to [3] 

q~ ; u_ _~ _____xsin ku du 
dX = ~ s in  k (,-0:~+ ~) cos kxodX o u2 s 45.2, 

0 

co 

[ 28coskudu qo 
~ - ~ = ;  . dY ~ s in  k (z o q -  ~) s i n  kXodX o j u" q- ~0" 

~o 
o 

25 c o s k u  du u s in  ku d,, ~ e_m~t~ ' 
u ~ - 4 5 2  .... , u 2 - ~ 4 5  ~ --  ~f 

0 0 

we have 
qo e2 --',6h. q2e-26~ 

~ x =  2,% sin k (z o + ~) co~ t~o~l~- o , a r  - --2~0 ~in/,: (:% + ~)~ si~ ~,:~o,t~, , 

Prom this we define the attractive force per unit surface: 

X -- q~e-28~ l im  ~ k  s i n  k (x o + ~) cos k:codx o -- --2P.o s in  ~'~ l ira ~ cos-  kYodxo, 
2~t o 

0 0 

i.e., 

2 - - ' J6k  2 --96h 
qo e ~ qo c - 

X - -  - -  s in  k~, Y -  
2,u o 2~ o 

cos ]<L 
( 1 . 5 )  

We will now consider the force of attraction (or repulsion) between the surface y = 6 and the 
surface y = --~ -- l, formed by the two ends of the magnets. This force can be calculated from 
Eq. (1.5) by replacing the quantity 26 by 25 + ~ and considering the sign of the forces Then 
the total force is given by the expression 

q~e--26h - 

x =  i (~ - -~-~h)~s i ,  l,:~, r =  s 1 7 6  ~6~ ( 1 - - ~ - ~ ) 2 ~ o ~ ' ~ .  
2~t o 2t% 

Considering that the force of interaction between a unit magnetic pole dq and a magnetic fiel 
of intensity H is determined by the product dX = dqH, from Eq. (1.5) we find the value of the 
field intensity on the surface itself, at the point corresponding to the maximu~ ~' 

t fx  = qo/tXo, /fg =: qo/~o. 

Using the magnetic induction B = ~oH, we write the force 

B 2 32 
X --  ~ ' o  e-261~ (l  - -  e-zh)  2 s i n  k~, Y = 21~o-- e -25k (i  - -  e--lh) ~ cos k~, 
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2. Knowing the force characteristics of the magnetic field of system (1.6), we can 
construct dynamic equations. We will displace the rod to the right by an amount y. Then 
the right-hand gap will be ~ -- y, and the left-hand, ~ + y. In this case the attractive 
(repulsive) force for the right-hand gap will be 

B ~ y+ _ -- e -2~k-vh (i -- e-~) ~ cos kx  , 
2~ 0 

while for the left-hand gap 

2 

Y- B~  e -2~h+vhli e-Zh) 2coskx. 

Then the total force will be given by 

B ~ 
= Y+ + Y- = -- e -2~ (i -- e-l~) 2 cos ~x sh ky. 

Similarly we define the force ~ by the expression 

B 2 ~9 = X + @ X- = - -  e -2~k (t -- o-lh) u sin kx ch kg. ( 2 . 1 )  
P0 

A s i d e  f rom t h e  f o r c e  ~ ,  t h e r e  w i l l  a c t  a d e s t a b i l i z i n g  f o r c e  .~*, p r o d u c e d  by  t h e  l o w e r  mag-  
n e t i c  s y s t e m ,  t h e  s u p p o r t i n g  m e c h a n i s m .  F o r  t h e  c a s e  w h e r e  t h i s  s u p p o r t  s y s t e m  i s  composed 
o f  s e v e r a l  m a g n e t i c  p o l e s ,  by  a n a l o g y  t o  Eq.  ( 2 . 1 )  we f i n d  f o r  t h e  f o r c e  ~* 

B 2 
, 1 - -25h 1 . , 

= ~ e s i n  I;l~. ] 

Here  k~ i s  t h e  wave n u m b e r  o f  t h e  l o w e r  m a g n e t i c  s y s t e m .  
t o  

B 2 

P = ~ O ~ COS a ' l y ,  - 
ro  

The supporting force will be equal 

= B 2 At y = 0 we have P = mg. Hence we find mg [exp(--26kl)] ~/~o, then N* = mg sin kly. With 

consideration of all forces acting we can write the equations of motion of the rod: 

Introducing the notation 

we transform Eq. 

d2x B 2 
e -2~h (t -- e--lh) 2 sin k x  ch ky ,  

m dt  z - -  ~to 

d2 y B 2 
m ~ = -- ~ e -uSh (i -- e-lll) 2 cos kx sh ky -i-rag sin klg. 

(2.2) 

B 2 

- -  e - 2 6 a  ( l  - -  e - Z h )  2 = A ,  k 1 = l ,  
~o  ra 

(2.2) to the form 

d~x/dt ~ = A sin k x  ch ky ,  d fy /d t  2 = - - A  cos k x  sh ky  4 g sin ly.  (2.3) 

It can be shown that Eq. (2.3) is the equation of motion 

d f x l / d #  = ~OH(x) /OXl ,  d~xf/dt  ~ = --OH(x)/Ox~ 

i n  a f o r c e  f i e l d  w i t h  p o t e n t i a l  H(x) = a ch kx2 cos  k x l  + b cos  I x 2 ( x ,  = x ,  x2 = y)  and  p e r -  
m i t s  definition of a Hamiltonian energy integral 

i y2 H = -~- (Y~ + 3) + a ch kx~ cos kx  1 + b cos lx 2, ( 2 . 4 )  

whe re  y~ ,  y2 a r e  t h e  c a n o n i c a l  momenta  c o r r e s p o n d i n g  t o  t h e  c o o r d i n a t e s  x~ ,  x f .  

We w i l l  d e t e r m i n e  t h e  s i n g u l a r  p o i n t s  o f  s y s t e m  ( 2 . 3 )  ( e q u i l i b r i u m  p o s i t i o n s )  a nd  e s t a b -  
l i s h  conditions for their stability by studying the topological structure of the energy sur- 
face defined by Hamiltonian (2.4) in their vicinity, using the approach described in [4, 5]. 
We will consider the equations 
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Fig. 2 

a k c h k x 2 s i n k x  ~ = O, " a k s h k x 2 c o s k x l ~  b l s i n l x 2 =  O. 

From the first equation we obtain the solutions xl = ~i/k (i = 0, +i, +2, 
eration of which the second equation of Eq. (2.5) takes on the form 

(2.5) 

...), with consid- 

~ ( - - l ) i a k  sh k x  2 + bl sin lx  2 = O. (2.6) 

We will study the solutions of Eq. (2.6) graphically. Thus, for xx = ~ie/k (i e = 0, ~2, 

...) we write Eq. (2.6) in the form bl sin Ix2 = ak sh kx2. Graphing the functions fl = 

b~ sin Ix2, f2 = ak sh kx2, at the points of their intersection we obtain solutions of Eq. 

(2.6). It is evident from Fig. 2 that solutions other than x2 = 0 will exist only when the 
inequality 

is satisfied. 
ing manner. Let n be 

The total number of solutions of Eq. (2.6), N, can be determined in the follow- 
the largest number of waves for which the inequality 

bl > a k s h k ( n n / l ~ - ~ / 4 1 )  

is satisfied~ Hence 

n = [ - - t / 4 @ ( l / n k )  arcsh~], ~ = b l / a k .  (2.7) 

(2n + 2)2 -- 1 = 4n + 3. For x~ = ~io/k (io = +i, +3, ...) the number N~ of solutions 
(2.6), i.e., equilibrium positions, is the same, or two smaller, i.e., N~ = N or N~ = 
Thus we have the following discrete set of equilibrium positions: 

Then N = 
of Eq. 
N -- 2. 

Goe = {x, y; Y l - "  Y2 = 0; x 1 = ~ ie /k ,  x 2 =  0; i e = O, •  . . . ) ,  

Goo = {x, g; g l =  g2 = 0; x 1 = ~io/k,  x~ = 0; io = •  •  ...}, 
Gji = {x, y; g~ -= g~ = 0;x  1 = n i / k ;  x2--  x2j (?, (~);i = 0, =t=t, •  . . . ; ]  = 4-1, 

+__2...}. 

We note the significance of the parameters o and y in existence of a sequence of equilibrium 
positions for Eq. (2.3). 

We will determine the type of topological structure of the energy surface H = H(x, y) by 
examining the Gaussian curvature defined by the expression 

where 
G(x, g) = ( t  @ ]grad HI2) -3]~ det Hess (H; x, y), 

02II (s) ~ 
Hess (H;s) = \ Os Os 1 '  

( s  i s  t h e  v a r i a b l e  s y s t e m  v e c t o r ,  s = ( x l ,  x 2 ,  y l ,  y 2 ) ) .  
the Gaussian curvature. 

We will now make use of the following 

Definition. The surface H(x, y) is topologically equivalent to the surface H*(x, y) in 
some related region F(x, y) if the following relationship is satisfied: 

(2.8) 

We will use matrix (2.8) to study 

Qr(x , y )Hess  (H; x, y)Q(x,  y) = Hess (H*; x, y), ( 2 , 9 )  
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where Q(x, y) is some quadratic matrix. 

In the case where the region is the vicinity of an equilibrium position, each of which in 
the given case is a nondegenerate critical point of the surface H(x, y), and the surface 

'it 

71 2 l 2 H * ( x ,  y )  i s  c a n o n i c a l ,  i . e . ,  II*(x,y)  ~ ( a F q - r ~ h ) ,  w h e r e  u i '  B. t a k e  on  t h e  v a l u e s  +1 t h e  
i ~ l  3- -- ' 

given definition is based on Morse's lemma [6]. 

Since the matrix Hess (H; x, y) is symmetric, a transform (the matrix Q(x, y)) will al- 

ways exist. However if H*(x, y) is such that the matrix Hess(H; x, y) is diagonal while the 

region F(x, y) is not local, then the question of definition of the transform Q(x, y) remains 
open. 

It is known [4] that if the condition Ar(x, y) >0 for alli= I, 2n, where {Ar} is the sequence 

of negative main minors of matrix (2.8), is satisfied, then G(x, y) is positively defined. It 

is then possible to determine a sequence (with consideration of the existence of a sequence of 
equilibrium positions for Eq. (2.3)) of closed compact invariant regions 

~+~ (z, y) ~ a+~ LJ O(2i~z, OL)+u --  is the boundary of the region, 

0a+ . , s s  / m s s  ( . . , )  < = % }, 
Of~i ) 

9 + =  r 1 a , a + = { A i r > O  }, ~-- is the number of the region, 

containing both a stable equilibrium position and periodic (quasiperiodic) system trajectories. 
In each such region Hamiltonian (2.4) is topologically equivalent to the Hamiltonian 

= �9 

We will now consider the cases of indeterminate sign and negative sign determination of G(x, y) 
(and thus matrix (2.8)). 

For the given Hamiltonian (2.4) the matrix (2.8) has the simple form 

It/(a   (o)t (2.10) 

\ (0) (1)7 

where its elements are 2 • 2-matrices. Because of the form of matrix (2.10) it is sufficient 
to examine its submatrix 

(02H (x>h ( - -ak~coskx lchkx2- -a l~2s inkx i shkx~  ~ ( 2 . 1 1 )  
- -  ~ ~ 2 X "\ OxiOxJ ] t - -  ak~ sin kxz sh kx~ ak" cos kx i ch kx= -- bl cos l 2) 

which corresponds to study of the topology of the surface ~ = ~(x). Using Eq. (2.11), we de- 
fine 

h!(x) : --ak 2 cos kx 1 ch kx2, 

Az(x) = a~k'l(--ch ~ kx2 -~- sin ~" kxi @ ? cos kx 1 cos lx. 2 ch kz j ,  

while 

, ,  ian(x)k~ /0n(z )~2~3i~=G(z) '  

where G(x) is the Gaussian curvature of the surface ~ = ~(x). 

and Goo we have For points of the sets ~oe 

(2.12) 
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Al(l]lOe ) = ~ak2, A2(A~/oe) : a2k4(--i -~ ?); 
A2(Moo) = ak 2, A~z(Moo) = a~k~(--i ~ ?). 

From this it follows that for y < 1 all equilibrium positions of the sets Goe, Goo considered 
in the subspace X are hyperbolic, and the structure of the surface defined by the potential 
energy function in the vicinity of these points is equivalent to a saddle. Therefore Hamil- 
tonian (2.4) in the vicinity of the equilibrium position of the sequences Goe and Goo is 
topologically equivalent to Hamiltonian 

i ~ I _ 2 x~), (2.13) 

where the upper sign refers to points of the set Goe, and the lower sign to Goo. At y > i 
at the equilibrium points of Goe matrix (2.11) is negatively determined. From this it follows 
that at these points the function H(x) has a maximum, so that Hamiltonian (2.4) in the vicinity 
of each of these points is topologically equivalent to the Hamiltonian 

H* = ~ ( h  § ~ ) "  -~- (z~ + z~). (2.14) 

For all remaining (at y > i) equilibrium positions we obtain 

AI(Mji) = ~( - -1) iak2chkx2 ,  hz(MTi)--a2kachkx2(--chkx~+ (~t ) i~cos/xJ .  

Hence at i = io it follows that AI(Mj~0)>0, A2(Mji0)=a2k%hkx~(--chkx2 -?coslzj, and for suffi- 

ciently large y at j = jo satisfaction of the inequality A2(Mjoio) > 0 is possible. There- 

fore, aside from maximum points and saddle points, in the vicinity of which Eqs. (2 14), 
(2.13) are valid, at i = io, j = jo there exist points where the function K(s) is at a minimum, 
thus allowing representation of Hamiitonian (2.4) in their vicinity in the form of Eq. (2.9) 
so that these are stable equilibrium points of system (2.3). 

Thus, the model admits the existence of magnetic traps in a manner similar to the way 
the limited model three-body problem of celestial mechanics admits existence of gravitational 
traps corresponding to the libration points L4 and Ls [7]. Here the existence of stable 
equilibrium positions contradicts Ernshaw's theorem [i] which states the impossibility of a 
stable configuration created by permanent magnets, and can be explained by the lack of con- 
sideration of displacement along the z coordinate, i.e., by the limited formulation of the 
problem. 

Our goal now will be to establish conditions for existence of trajectories corresponding 
to longitudinal motion (along the axis Ox~)with limited change in the coordinates yz, x=, y2 
and to study the stability of such a trajectory with respect to small initial perturbations. 
We can relate the search for such conditions to establishing the possibility of representing 
Hamiltonian (2.4) in some tube T(x, y) = {x, y, Ix~l < ~, Ix21 < Ao, A~ < H(x, y) < h2, Ai < 

C = const} in the equivalent form H*(x, y), the trajectories of which have the required prop- 
erties, and then, to establishment of time limits or other conditions for maintenance of these 
properties. 

Consideration of the trajectories of Hamiltonian (2.4) at y < 1 on the basis of an equiva- 
lent H*(x, y) of the form of Eq. (2.13) in the tube T shows the impossibility of existence in 
system (2.3) of trajectories corresponding to the limiting motion. Therefore we will turn to 
consideration of the case y > i. Here the topological structure of the force field (potential 
energy) is insured by high parameter values (y = 62.5, ~ = 25.0). By Eq. (2.7) the quantities 
y and o define the value n = i. Below we will show that the condition y >> I, n ~ 1 is signif- 
icant in determining the possibility of reduction to equivalent structures. 

By using reductions of the relative character of equilibrium positions it can be estab- 
lished that upon change in the coordinates x~, yz, x2, y2 in the tube 

r (x, v) = v: ix1 i <  l l <  x 2 n (Ml e) < z (x, v) < n ( ' 0 , o ) 1 ,  

w h e r e  Mzie  i s  t h e  s e c o n d  p o i n t  i n  t h e  s e q u e n c e  o f  e q u i l i b r i u m  p o s i t i o n s ,  c o r r e s p o n d i n g  t o  i e ,  
Moie  i s  t h e  f i r s t  p o i n t  o f  t h e  same s e q u e n c e ,  t h e  maximum p o i n t  o f  t h e  f u n c t i o n  H ( x ) ,  
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Hamiltonian (2.4) is topologically equivalent to Hamiltonian 

H* = + + Y x i + (2.15) 

Hamiltonian (2.15) can be analyzed easily. From Eq. (2.15) we obtain two independent 

systems HI and H2, where 

Hence, if the values of the energy H~ are such that the initial point (x~, y~) is located be- 
yond the separatrix dividing the region of periodic motions of the system H~ from the region 
of motions departing to infinity along the axis Ox~ at finite y:, and the values of energy 
H= are such that the initial point (x~, y~) lles within the region of periodic motions of the 
system H= (H= < H=c, where H=c is the energy corresponding to motion along the separatrix), 
the trajectory obtained from the initial point (x~, y~, x~, y~) will correspond to the desired 
one. Naturally, since the given system (2.3) is bound (which leads to redistribution of the 
initial energy between subsystems HI and H= while maintaining the integral H = H~ + H2), there 
must exist a moment of time t* at which the energy H=c in system H= will be exceeded. Never- 
theless, it can be expected that the interval [0, t*] will not be brief. Such a possibility 
may be based on the presence in system (2.3) of an energy localization effect [8], in which 
not all the energy of one of the mutually coupled systems is transferred to the other. It 
can be proposed that the possibility of existence of a similar quality in the system of Eq. 
(2.3) will depend on how much the transform P(x) which changes N(x) to ~*(x) for the parameter 
range limited by the conditions y ~ i, n > i, differs from an identity. 

We will note that for 7, ~ values for which n = 0 such an approach leads to a different 
result. Thus we will consider a system with y = 5.625, ~ = 7.5 at a = 0.5, k = 4, b = 5, I = 
3. Such values of y and ~ insure the presence of only three sequences of equilibrium posi- 

tions for system (2.3), Goe, Goo and G~i e 

Gll ~ = { x , y : y l =  u2=0;Xl  =n~ /k ,  x~ = • z~(~,~)}. 

The equilibrium point sequences Goo and G~i e are saddle points for the surface ~ = H(x), while 
at the equilibrium positions Goe the function ~(x) has a maximum, i.e., in accordance with 
Ernshaw's theorem all equilibrium positions are unstable. For the case considered the sur- 
face ~ = H(x) cannot be reduced to the form of Eq. (2.12). The topological equivalent of 

Hamiltonian (2.4) in the tube T(x, y) will be the Hamiltonian 

H* = -f- (y~ + y~)--~ T (-- x~-~- cos xl). ( 2 . 1 6 )  

Examination of the trajectories of Hamiltonian (2.16) reveals the absence of trajectories 
limited in the coordinates x2, y2. Thus, the limitation n ~ i, where n is determined from 
Eq. (2.7), is significant and determines the possibility of representing Hamiltonian (2.4) in 

the equivalent (within tube T) form of Eq. (2.15). 
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